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Abstract
The interest of quadratic algebras for position-dependent mass Schrödinger
equations is highlighted by constructing spectrum generating algebras for a
class of d-dimensional radial harmonic oscillators with d � 2 and a specific
mass choice depending on some positive parameter α. Via some minor changes,
the one-dimensional oscillator on the line with the same kind of mass is included
in this class. The existence of a single unitary irreducible representation
belonging to the positive-discrete series type for d � 2 and of two of them for
d = 1 is proved. The transition to the constant-mass limit α → 0 is studied
and deformed su(1,1) generators are constructed. These operators are finally
used to generate all the bound-state wavefunctions by an algebraic procedure.

PACS numbers: 03.65.Fd, 03.65.Ge

1. Introduction

During recent years, quantum mechanical systems with a position-dependent (effective) mass
(PDM) have attracted a lot of attention and inspired intense research activities. They are
indeed very useful in the study of many physical systems, such as electronic properties of
semiconductors [1] and quantum dots [2], nuclei [3], quantum liquids [4], 3He clusters [5],
metal clusters [6], etc.

Furthermore, the PDM presence in quantum mechanical problems may reflect some other
unconventional effects, such as a deformation of the canonical commutation relations or a
curvature of the underlying space [7]. It has also recently been signalled in the rapidly
growing field of PT-symmetric [8, 9] (or pseudo-Hermitian [10] or else quasi-Hermitian
[11]) quantum mechanics as occurring in the Hermitian Hamiltonian equivalent to some
PT-symmetric systems at lowest order of perturbation theory [12–14].

Looking for exact solutions of the Schrödinger equation with a PDM has become an
interesting research topic because such solutions may provide a conceptual understanding of
some physical phenomena, as well as a testing ground for some approximation schemes. The
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generation of PDM and potential pairs leading to exactly solvable, quasi-exactly solvable or
conditionally exactly solvable equations has been achieved by extending some methods known
in the constant-mass case, such as point canonical transformations [15–34], Lie algebraic
methods [35–39] and supersymmetric quantum mechanical techniques (or related intertwining
operator methods) [7, 18, 19, 21, 22, 24, 34, 35, 40–48].

Another powerful tool used in standard quantum mechanics is that of nonlinear algebras,
more specifically quadratic ones. For one-dimensional systems allowing exact solutions,
such algebras may help us to understand the relation between the time evolution of classical
dynamical variables and that of corresponding quantum operators, while providing a general
method for constructing spectrum generating algebras [49] (see also [50]). In more than one
dimension, they are a clue to classifying superintegrable systems with integrals of motion
quadratic in the momenta [51–53] and to solving the Schrödinger equation for such systems
[54–56].

In a PDM context, there has been no systematic use of quadratic algebras so far, although
the presence of one of them has been signalled in a one-dimensional problem [43]. To start
filling in this gap, we have recently considered the quadratic algebra generated by the integrals
of motion of a two-dimensional superintegrable PDM system and shown how a deformed
parafermionic oscillator realization of this algebra allows one to derive the bound-state energy
spectrum [57].

In the present paper, we turn ourselves to another aspect of quadratic algebras, namely
their occurrence as spectrum generating algebras, which we shall illustrate with the simplest
example, corresponding to a harmonic oscillator potential. For a constant mass, it is well
known (see, e.g., [58]) that all the states of such a potential with a given parity in one
dimension or with a given angular momentum l in more than one dimension belong to a single
unitary irreducible representation of an su(1,1) Lie algebra. The corresponding lowest-energy
state is annihilated by the lowering generator, while the remaining states can be obtained
from it by repeated applications of the raising generator. We plan to show that for a specific
PDM choice, similar results apply except that su(1,1) gets deformed. We shall establish that
a quadratic algebra approach provides us with a key to constructing such a deformed algebra,
while allowing us at the same time to derive the bound-state energy spectrum.

In section 2, we present the Schrödinger equation of a PDM d-dimensional radial harmonic
oscillator (d � 2) and review its bound-state energy spectrum. The corresponding spectrum
generating algebra is constructed in section 3. In section 4, we show how the general
d-dimensional results can be applied to the one-dimensional oscillator on the full line with a
similar PDM. Finally, section 5 contains the conclusion.

2. Schrödinger equation of a PDM d-dimensional radial harmonic oscillator

Whenever both the PDM m(r) and the potential V (r) only depend on the radial variable r, the
corresponding d-dimensional Schrödinger equation is separable in spherical coordinates. On
writing the radial wavefunction as r−(d−1)/2ψ(r), so that the normalization condition for ψ(r)

reads ∫ ∞

0
|ψ(r)|2dr = 1, (2.1)

we end up with the radial equation(
− d

dr

1

M(r)

d

dr
+ Ṽeff(r)

)
ψ(r) = Eψ(r). (2.2)
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Here, M(r) is the dimensionless form of the mass function m(r) = m0M(r), we have taken
units wherein h̄ = 2m0 = 1 and

Ṽeff(r) = Veff(r) − (d − 1)M ′

2rM2
+

L(L + 1)

Mr2
,

where a prime denotes derivative with respect to r, L is defined by L = l + (d − 3)/2 in terms
of the angular momentum quantum number l and Veff(r) is the effective potential that would
arise in the Cartesian coordinate approach to the problem (see equation (2.3) of [24]).

Let us now consider a PDM d-dimensional harmonic oscillator, whose radial Schrödinger
equation is obtained by replacing in the constant-mass one the radial momentum pr = −i d/dr

by some deformed operator, πr = √
f (α; r)pr

√
f (α; r), where f (α; r) = 1 + αr2 and α is a

positive real constant. The result of this substitution reads(
π2

r +
L(L + 1)

r2
+

1

4
ω2r2

)
ψ(α)(r) = E(α)ψ(α)(r) (2.3)

which is equivalent to (2.2) with

M(α; r) = 1

f 2(α; r)
= 1

(1 + αr2)2

and

Ṽeff(r) = L(L + 1)

r2
+

1

4
(ω2 − 8α2)r2 − α

or

Veff(r) = 1
4 {ω2 − 4α2[L(L + 1) + 2d]}r2 − α[2L(L + 1) + 2d − 1].

Observe that the constant-mass limit corresponds to α → 0, in which case equation (2.3) gives
back the standard constant-mass equation.

Supersymmetric quantum mechanical methods, combined with deformed shape
invariance, have shown [47] that the PDM Schrödinger equation (2.3) has an infinite number
of bound states giving rise to a quadratic energy spectrum

E
(α)
n,L = α

(
4n2 + 4n(L + 1) + L + 1 + (4n + 2L + 3)

λ

α

)
, n = 0, 1, 2, . . . , (2.4)

where λ = 1
2 (α + �) and � =

√
ω2 + α2. In the same work, the lowest-energy wavefunction

(for given L) has been obtained in the form

ψ
(α)
0,L(r) = N (α)

0,LrL+1f −[λ+(L+2)α]/(2α), (2.5)

where the normalization coefficient N (α)
0,L can be easily determined from (2.1) as

N (α)
0,L =

(
2αL+ 3

2 �
(

λ
α

+ L + 2
)

�
(
L + 3

2

)
�

(
λ
α

+ 1
2

)
)1/2

.

Some lengthy calculations along the same lines also yield [59]

ψ
(α)
n,L(r) = N (α)

n,L

N (α)
0,L

P
( λ

α
− 1

2 ,L+ 1
2 )

n (t)ψ
(α)
0,L(r), (2.6)

where P
( λ

α
− 1

2 ,L+ 1
2 )

n (t) is a Jacobi polynomial [60] in the variable

t = 1 − 2

f
= −1 + αr2

1 + αr2
(2.7)
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and

N (α)
n,L

N (α)
0,L

=
(

�
(
L + 3

2

)
�

(
λ
α

+ 1
2

)
n!

(
λ
α

+ 2n + L + 1
)
�

(
λ
α

+ n + L + 1
)

�
(

λ
α

+ L + 2
)
�

(
λ
α

+ n + 1
2

)
�

(
n + L + 3

2

)
)1/2

. (2.8)

Since in the constant-mass limit, the parameter λ goes over to ω/2, it is clear that in such a
limit the quadratic energy spectrum (2.4) becomes linear and given by En,L = ω

(
2n + L + 3

2

)
.

Furthermore, the mere definition of e, combined with limit relations between orthogonal
polynomials [60] also allows us to retrieve the results for constant-mass wavefunctions ψn,L(r),
depending on the Laguerre polynomials [61].1

3. Spectrum generating algebra of the PDM d-dimensional radial harmonic oscillator

In order to build a counterpart of the su(1,1) spectrum generating algebra obtained in the
constant-mass case [58], it is useful to start from a quadratic algebra approach. It has indeed
been suggested [49, 50, 54] that for a whole class of Hamiltonians, such as those for which
the bound-state wavefunctions can be written as the lowest-energy one multiplied by the
increasing-degree polynomials in some variable t, there may exist an (in general nonlinear)
algebra generating the spectrum, whose three generators are the Hamiltonian and the variable
t, which are Hermitian operators, as well as their anti-Hermitian commutator. This algebra is
characterized by a Casimir operator, which is some polynomial function of the three generators
[49]. This is the approach to be followed in section 3.1.

3.1. Quadratic algebra approach to the spectrum generating algebra

Let us start from the Hamiltonian defined in equation (2.3), the variable t considered in (2.7)
and their commutator,

K̃
(α)
1 = π2

r +
L(L + 1)

r2
+

1

4
ω2r2, K̃

(α)
2 = t, K̃

(α)
3 = −4iα

(
2

r

f
πr + it

)
. (3.1)

From the basic commutator [r, πr ] = if (α; r), it is straightforward to derive the relations[
K̃

(α)
1 , K̃

(α)
2

] = K̃
(α)
3 ,[

K̃
(α)
2 , K̃

(α)
3

] = 8α
(
1 − K̃

(α)2
2

)
,[

K̃
(α)
3 , K̃

(α)
1

] = −8α
{
K̃

(α)
1 , K̃

(α)
2

} − 16α2

[
λ

α

(
λ

α
− 1

)
+ L(L + 1) − 1

]
K̃

(α)
2

− 16α2

[
λ

α

(
λ

α
− 1

)
− L(L + 1)

]
, (3.2)

showing that the operators K̃
(α)
1 , K̃

(α)
2 and K̃

(α)
3 generate a quadratic algebra. Its nature can

be determined by comparing (3.2) with equation (3.2) of [49], defining the (general) Askey–
Wilson algebra QAW(3) in terms of eight parameters R,A1, A2, C1, C2,D,G1 and G2. Since
in the present case, R = A1 = C1 = 0, we have to deal here with a quadratic Jacobi algebra
QJ(3), characterized by the parameters

A2 = −8α, C2 = −16α2

[
λ

α

(
λ

α
− 1

)
+ L(L + 1) − 1

]
, D = 0, G1 = 8α,

(3.3)

G2 = −16α2

[
λ

α

(
λ

α
− 1

)
− L(L + 1)

]
.

1 Note that we obtain a phase factor (−1)n not present in equation (28.5) of [61]. This phase factor is consistent
with the positive matrix elements for the su(1,1) generators and with standard wavefunctions for the one-dimensional
harmonic oscillator (see section 4).
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As D2 − 4A2G1 �= 0, this algebra is a non-degenerate one, i.e., an algebra that cannot be
reduced to a Lie algebra by a change of basis.

From equation (3.4) of [49], we get the corresponding Casimir operator in the form

Q(α) = −16αK̃
(α)
2 K̃

(α)
1 K̃

(α)
2 + K̃

(α)2
3 − 16α2

[
λ

α

(
λ

α
− 1

)
+ L(L + 1) − 1

]
K̃

(α)2
2

+ 16αK̃
(α)
1 − 32α2

[
λ

α

(
λ

α
− 1

)
− L(L + 1)

]
K̃

(α)
2 . (3.4)

Its eigenvalue can be obtained by inserting the explicit expressions (3.1) in (3.4) and is given
by

Q(α) = 16α2

[
λ

α

(
λ

α
− 1

)
+ L(L + 1) − 2

]
. (3.5)

Our aim now consists in constructing a positive-discrete series unitary irreducible
representation of this algebra spanned by the Hamiltonian eigenfunctions ψ

(α)
n,L(r), n =

0, 1, 2, . . . , which will be a counterpart of the su(1,1) representation D+
k with k = 1

2

(
L + 3

2

)
,

obtained in the constant-mass case [58].
From the general theory developed in [49, 54], we know that in a basis ψp wherein the

Hamiltonian, i.e., the generator K̃
(α)
1 , is diagonal, the unitary irreducible representations of

QJ(3) are given by

K̃
(α)
1 ψp = λpψp,

K̃
(α)
2 ψp = ap+1ψp+1 + apψp−1 + bpψp,

K̃
(α)
3 ψp = gp+1ap+1ψp+1 − gpapψp−1,

where λp, ap, bp and gp are some real constants, which can be expressed in terms of the
defining parameters (3.3) and read

λp = α

[
4p(p + 1) − λ

α

(
λ

α
− 1

)
− L(L + 1) + 1

]
,

a2
p = [16p2(2p − 1)(2p + 1)]−1

(
2p − λ

α
+ L + 1

) (
2p − λ

α
− L

)

×
(

2p +
λ

α
− L − 1

) (
2p +

λ

α
+ L

)
,

bp = −[4p(p + 1)]−1

(
λ

α
− L − 1

) (
λ

α
+ L

)
,

gp = 8αp.

(3.6)

An infinite-dimensional representation of the positive-discrete series type D+
p0

is then
characterized by the properties a2

p0
= 0 and a2

p > 0 if p = p0 + n, n = 1, 2, . . .. From
the explicit value of a2

p given in (3.6), it is clear that, for generic values of λ/α and L, such
conditions can be achieved in a single way, namely by assuming

p0 = 1

2

(
λ

α
+ L

)
. (3.7)

From (3.6) and (3.7), it results that the eigenvalues λp0+n of K̃
(α)
1 in D+

p0
coincide with the

energy eigenvalues (2.4), i.e., λp0+n = E
(α)
n,L, n = 0, 1, 2, . . . .
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Furthermore, if we reset ψp0+n → ψ
(α)
n,L, ap0+n → a

(α)
n,L, bp0+n → b

(α)
n,L and gp0+n → g

(α)
n,L,

the action of the generators K̃
(α)
2 and K̃

(α)
3 on the basis functions can be recast in the form

K̃
(α)
2 ψ

(α)
n,L = a

(α)
n+1,Lψ

(α)
n+1,L + a

(α)
n,Lψ

(α)
n−1,L + b

(α)
n,Lψ

(α)
n,L,

(3.8)
K̃

(α)
3 ψ

(α)
n,L = g

(α)
n+1,La

(α)
n+1,Lψ

(α)
n+1,L − g

(α)
n,La

(α)
n,Lψ

(α)
n−1,L,

where

a
(α)
n,L = τn

λ
α

+ 2n + L

(
n(2n + 2L + 1)

(
λ
α

+ n + L
) (

2 λ
α

+ 2n − 1
)

(
λ
α

+ 2n + L − 1
) (

λ
α

+ 2n + L + 1
)

)1/2

,

b
(α)
n,L = −

(
λ
α

− L − 1
) (

λ
α

+ L
)

(
λ
α

+ 2n + L
) (

λ
α

+ 2n + L + 2
) , (3.9)

g
(α)
n,L = 4α

(
λ

α
+ 2n + L

)
,

and τn is a phase factor depending on the choice made for the relative phase of ψ
(α)
n,L and ψ

(α)
n−1,L.

The first equation in (3.8) can be reduced to the recursion relation for the Jacobi polynomials

P
( λ

α
− 1

2 ,L+ 1
2 )

n (t) and with the choice made in (2.8) for the normalization coefficients, we find
that τn = +1.

We conclude that the solutions of the PDM Schrödinger equation (2.3) can be derived by
only using the quadratic algebra generated by the operators (3.1). To obtain from the latter
the generators of a deformed su(1,1) spectrum generating algebra (and consequently a simpler
construction of wavefunctions), we shall need to build some ladder operators, generalizing
the constant-mass ones. Before proceeding to such a derivation in section 3.3, it is worth
considering the constant-mass limit of the quadratic algebra that we have just introduced.

3.2. Constant-mass limit of the quadratic algebra

Although appropriate for solving the Schrödinger equation (2.3), the basis
(
K̃

(α)
1 , K̃

(α)
2 , K̃

(α)
3

)
of our quadratic algebra is not convenient to determine its α → 0 limit because K̃

(α)
2 goes over

to the constant −1. To circumvent this difficulty, it is necessary to go from
(
K̃

(α)
1 , K̃

(α)
2 , K̃

(α)
3

)
to a new basis

(
K̄

(α)
1 , K̄

(α)
2 , K̄

(α)
3

)
.

Let us set

K̄
(α)
1 = K̃

(α)
1 = π2

r +
L(L + 1)

r2
+

1

4
ω2r2,

K̄
(α)
2 = 1

α

(
1 − K̃

(α)
2

)−1(
1 + K̃

(α)
2

) = r2,

K̄
(α)
3 = 1

2α

{(
1 − K̃

(α)
2

)−1
, K̃

(α)
3

} = −2(2irπr + f ).

Observe that the inverse transformation reads

K̃
(α)
1 = K̄

(α)
1 , K̃

(α)
2 = (

1 + αK̄
(α)
2

)−1(−1 + αK̄
(α)
2

)
,

(3.10)
K̃

(α)
3 = α

{(
1 + αK̄

(α)
2

)−1
, K̄

(α)
3

}
.

Either from the commutation relations (3.2) of the first basis generators or by direct
computation, we obtain for the second basis the commutation relations[
K̄

(α)
1 , K̄

(α)
2

] = 1
2

{
1 + αK̄

(α)
2 , K̄

(α)
3

}
,[

K̄
(α)
2 , K̄

(α)
3

] = 8K̄
(α)
2

(
1 + αK̄

(α)
2

)
,
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[
K̄

(α)
3 , K̄

(α)
1

] = 4
{
1 + αK̄

(α)
2 , K̄

(α)
1

} − 16α2 λ

α

(
λ

α
− 1

)
K̄

(α)
2

(
1 + αK̄

(α)
2

)
+ 4α

(
1 + αK̄

(α)
2

)(
1 + 3αK̄

(α)
2

)
.

In the α → 0 limit, it is obvious that these relations become linear. It is then straightforward to
show that the resulting operators K̄i = limα→0 K̄

(α)
i , i = 1, 2, 3, are some linear combinations

of su(1,1) generators K0,K+,K−, with commutation relations [K0,K±] = ±K± and
[K+,K−] = −2K0. The results read K̄1 = 2ωK0, K̄2 = (2/ω)(K+ + K− + 2K0) and
K̄3 = 4(K+ − K−).

Finally, on performing transformation (3.10) on the right-hand side of (3.4), the quadratic
algebra Casimir operator yields, after some calculations, the relation

Q(α) − 16α2

[
λ

α

(
λ

α
− 1

)
+ L(L + 1) − 2

]

= (
1 + αK̄

(α)
2

)−1
{

4α2

[
K̄

(α)2
3 − 16α2 λ

α

(
λ

α
− 1

)
K̄

(α)2
2 + 8

{
K̄

(α)
1 , K̄

(α)
2

}
+ 12 − 16L(L + 1)

]
+ 160α3K̄

(α)
2 + 112α4K̄

(α)2
2

}(
1 + αK̄

(α)
2

)−1
. (3.11)

From equation (3.5), it follows that the operator between curly brackets on the right-hand side
of (3.11) vanishes. Since ω2 = 4α2 λ

α

(
λ
α

− 1
)
, we observe a close similarity between the first

few terms making up this operator and the expression of the su(1,1) Casimir operator C =
−K+K− + K0(K0 − 1) in terms of K̄1, K̄2, K̄3, namely C = (

K̄2
3 − 4ω2K̄2

2 + 8{K̄1, K̄2}
)/

64.
We conclude that the substitution of a PDM for a constant mass has the effect of changing the
constant C = 1

4

(
L + 3

2

)(
L − 1

2

)
into a function of r,

C̄α(r) ≡ 1

64

[
K̄

(α)2
3 − 16α2 λ

α

(
λ

α
− 1

)
K̄

(α)2
2 + 8

{
K̄

(α)
1 , K̄

(α)
2

}]

= 1

16
[(2L + 3)(2L − 1) − 10αr2 − 7α2r4]. (3.12)

3.3. Deformed su(1,1) spectrum generating algebra

The purpose of this subsection is to construct a third basis
(
K

(α)
0 ,K

(α)
+ ,K

(α)
−

)
of our quadratic

algebra, satisfying the following three properties:

(i) K
(α)
0 is proportional to the Hamiltonian of the problem, while K

(α)
+ (resp. K

(α)
− ) is a

raising (resp. lowering) ladder operator, which means that, up to some multiplicative
factor, it transforms ψ

(α)
n,L into ψ

(α)
n+1,L (resp. ψ

(α)
n−1,L) for any n ∈ N (resp. n ∈ N

+) with

the additional condition that K
(α)
− annihilates ψ

(α)
0,L.

(ii) The operators K
(α)
0 ,K

(α)
+ ,K

(α)
− satisfy the same Hermiticity properties as K0,K+,K−,

i.e., K
(α)†
0 = K

(α)
0 and K

(α)†
± = K

(α)
∓ .

(iii) In the α → 0 limit, they go over to the su(1,1) generators K0,K+,K−.

From the known action of K̃
(α)
2 and K̃

(α)
3 on ψ

(α)
n,L, given in (3.8), we can construct some

n-dependent ladder operators

A(α)
+,n = K̃

(α)
3 + g

(α)
n,LK̃

(α)
2 − g

(α)
n,Lb

(α)
n,L, A

(α)
−,n = K̃

(α)
3 − g

(α)
n+1,LK̃

(α)
2 + g

(α)
n+1,Lb

(α)
n,L. (3.13)

It is indeed easy to check that

A(α)
+,nψ

(α)
n,L = a

(α)
n+1,L

(
g

(α)
n,L + g

(α)
n+1,L

)
ψ

(α)
n+1,L, A

(α)
−,nψ

(α)
n,L = −a

(α)
n,L

(
g

(α)
n,L + g

(α)
n+1,L

)
ψ

(α)
n−1,L.
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In (3.13), the quantum number n can be expressed in terms of E
(α)
n,L by inverting equation (2.4)

and choosing the non-negative root of the resulting quadratic equation. The result reads

n = 1

2

[
−

(
λ

α
+ L + 1

)
+ δn

]
, δn =

√
E

(α)
n,L

α
+

λ

α

(
λ

α
− 1

)
+ L(L + 1).

We can now eliminate the n-dependence from A
(α)
±,n by replacing E

(α)
n,L by the Hamiltonian

H = K̃
(α)
1 . This leads to the operators

A
(α)
± = K̃

(α)
3 − 4αK̃

(α)
2 (1 ∓ δ) + 4α

(
λ
α

− L − 1
) ((

λ
α

+ L
)

1 ± δ
, (3.14)

where

δ =
√

K̃
(α)
1

α
+

λ

α

(
λ

α
− 1

)
+ L(L + 1). (3.15)

Although such operators satisfy condition (i) referred to above, they do not fulfil the remaining
two conditions.

We can get rid of this shortcoming by multiplying A
(α)
± by some appropriate functions

F
(α)
±

(
K̃

(α)
1

)
of the Hamiltonian. Since the latter are not uniquely determined by conditions (ii)

and (iii), we may choose them in such a way that the action of K
(α)
± on ψ

(α)
n,L is the simplest

possible. Let us therefore define

K
(α)
± = ± 1

16λ
A

(α)
± (δ ± 1)

√
δ ± 2

δ
= ± 1

16λ
(δ ∓ 1)

√
δ

δ ∓ 2
A

(α)
± , (3.16)

leading to the relations

K(α)
+ ψ

(α)
n,L = α

λ

[
(n + 1)

(
n + L +

3

2

) (
n +

λ

α
+ L + 1

) (
n +

λ

α
+

1

2

)]1/2

ψ
(α)
n+1,L,

(3.17)

K
(α)
− ψ

(α)
n,L = α

λ

[
n

(
n + L +

1

2

) (
n +

λ

α
+ L

)(
n +

λ

α
− 1

2

)]1/2

ψ
(α)
n−1,L.

In (3.16), the factors ±√
(δ ± 2)/δ (alternatively ±√

δ/(δ ∓ 2)) are required by condition (ii)
above, whereas the factors (δ±1) (alternatively (δ∓1)) are optional ones having a simplifying
effect on the matrix elements contained in (3.17).

The definition of the third basis is finally completed by

K
(α)
0 = 1

4λ
K̃

(α)
1 ,

such that

K
(α)
0 ψ

(α)
n,L = 1

4λ
E

(α)
n,Lψ

(α)
n,L. (3.18)

In the α → 0 limit, equations (3.17) and (3.18) agree with the standard su(1,1)
results K±ψn,L(r) = [(

n + 1
2 ± 1

2

) (
n + L + 1 ± 1

2

)]1/2
ψn±1,L(r) and K0ψn,L(r) =

(En,L/2ω)ψn,L(r), respectively.
The three deformed su(1,1) generators K

(α)
0 ,K

(α)
+ and K

(α)
− satisfy the commutation

relations [
K

(α)
0 ,K

(α)
±

] = ±α

λ
K

(α)
± (δ ± 1) = ±α

λ
(δ ∓ 1)K

(α)
± ,

[
K(α)

+ ,K
(α)
−

] = −αδ

λ

(
2K

(α)
0 +

α

4λ

)
,
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which can be easily checked by applying both sides on any ψ
(α)
n,L. Observe that for α → 0, we

get αδ/λ → 1 and α/λ → 0, so that the standard su(1,1) commutation relations are retrieved,
as it should be.

The Casimir operator C(α) of this deformed su(1,1) algebra can be written as C(α) =
−K

(α)
+ K

(α)
− + f

(
K

(α)
0

)
, where the function f

(
K

(α)
0

)
must be such that C(α) commutes with

K
(α)
+ and that f

(
K

(α)
0

) → K0(K0 − 1) for α → 0. The latter condition of course determines
C(α) only up to some constant term of order O(α/λ). After some rather lengthy calculations,
we arrive at the result

C(α) = −K(α)
+ K

(α)
− + K

(α)2
0 − α

λ

(
δ − 5

4

)
K

(α)
0 − α2

8λ2
δ

leading to

C(α)ψ
(α)
n,L =

[
1

4

(
1 − α

λ

) (
L +

3

2

) (
L − 1

2

)
− 3α2

16λ2
L(L + 1)

]
ψ

(α)
n,L. (3.19)

Equation (3.19) should be contrasted with (3.12).
In the appendix, it is shown how the ladder operators K

(α)
+ and K

(α)
− can be used to fully

determine the functions ψ
(α)
n,L in a much more direct way than those sketched above equation

(2.6) and below equation (3.9).

4. One-dimensional harmonic oscillator case

The purpose of this section is to show how the results of section 3, valid for d � 2, can
be extended to the one-dimensional harmonic oscillator on the full line. This implies, in
particular, replacing the radial variable r (0 < r < ∞) by x (−∞ < x < ∞).

For a constant mass, it is well known that apart from the substitution r → x the
Schrödinger equation for the standard one-dimensional harmonic oscillator can be deduced
from the d-dimensional radial one by setting either L = −1 or L = 0. In the former (resp.
latter) case, one gets the even-parity (resp. odd-parity) wavefunctions and corresponding
eigenvalues, ψν,−1(r)/

√
2 → ψ2ν(x), Eν,−1 → E2ν (resp. ψν,0(r)/

√
2 → ψ2ν+1(x), Eν,0 →

E2ν+1), due to some relations between the Laguerre and Hermite polynomials [60]. As a
consequence, the single su(1,1) unitary irreducible representation D+

k , k = 1
2

(
L + 3

2

)
, of the

radial case gives rise to two such representations D+
1/4 and D+

3/4 (with the same Casimir
C = −3/16), for the one-dimensional case.

The PDM Schrödinger equation(
π2 + 1

4ω2x2)ψ(α)(x) = E(α)ψ(α)(x),

π =
√

f (α; x)p
√

f (α; x), p = −i
d

dx
, f (α; x) = 1 + αx2,

equivalent to (
− d

dx

1

M(x)

d

dx
+ Veff(x)

)
ψ(α)(x) = E(α)ψ(α)(x),

M(x) = 1

f 2(α; x)
= 1

(1 + αx2)2
, Veff(x) = 1

4
(ω2 − 8α2)x2 − α,

admits a similar treatment exploiting the results obtained for equation (2.3), provided we
distinguish again between the even- and odd-parity wavefunctions, given by

ψ
(α)
2ν (x) = N (α)

2ν

N (α)
0

P
( λ

α
− 1

2 ,− 1
2 )

ν (t)ψ
(α)
0 (x), ψ

(α)
0 (x) = N (α)

0 f −(λ+α)/(2α)
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and

ψ
(α)
2ν+1(x) = N (α)

2ν+1

N (α)
1

P
( λ

α
− 1

2 , 1
2 )

ν (t)ψ
(α)
1 (x), ψ

(α)
1 (x) = N (α)

1 xf −(λ+2α)/(2α),

respectively. Here, ν = 0, 1, 2, . . . , t = 1 − (2/f ) = (−1 + αx2)/(1 + αx2),

N (α)
0 =

( √
α�

(
λ
α

+ 1
)

√
π�

(
λ
α

+ 1
2

)
)1/2

,
N (α)

2ν

N (α)
0

=
(√

π�
(

λ
α

+ 1
2

)
ν!

(
λ
α

+ 2ν
)
�

(
λ
α

+ ν
)

�
(

λ
α

+ 1
)
�

(
λ
α

+ ν + 1
2

)
�

(
ν + 1

2

)
)1/2

,

N (α)
1 =

(
2α3/2�

(
λ
α

+ 2
)

√
π�

(
λ
α

+ 1
2

)
)1/2

,
N (α)

2ν+1

N (α)
1

=
(√

π�
(

λ
α

+ 1
2

)
ν!

(
λ
α

+ 2ν + 1
)
�

(
λ
α

+ ν + 1
)

2�
(

λ
α

+ 2
)
�

(
λ
α

+ ν + 1
2

)
�

(
ν + 3

2

)
)1/2

,

and the corresponding eigenvalues are

E(α)
n = α

(
n2 + (2n + 1)

λ

α

)
, λ = 1

2
(α + �), � =

√
ω2 + α2

in both cases n = 2ν and n = 2ν + 1.
There exists a quadratic spectrum generating algebra, for which we can construct three

sets of generators
(
K̃

(α)
1 , K̃

(α)
2 , K̃

(α)
3

)
,
(
K̄

(α)
1 , K̄

(α)
2 , K̄

(α)
3

)
and

(
K

(α)
0 ,K

(α)
+ ,K

(α)
−

)
, analogous

to those built in section 3. The only differences lie in the substitutions r → x, πr → π,

L(L+1) → 0, and in the very important fact that there are now two distinct unitary irreducible
representations instead of a single one. This can be seen from the counterpart

a2
p = [16p2(2p − 1)(2p + 1)]−1

(
2p − λ

α

) (
2p − λ

α
+ 1

) (
2p +

λ

α

) (
2p +

λ

α
− 1

)

of the similar quantity defined in (3.6). The conditions a2
p0

= 0 and a2
p > 0 if

p = p0 + ν, ν = 1, 2, . . . , characterizing positive-discrete series representations D+
p0

, are
indeed satisfied now by two distinct values of p0, p0 = 1

2

(
λ
α

− 1
)

and p0 = λ
2α

, corresponding

to L = −1 and L = 0 in (3.7) and to which we can associate λp0+ν = E
(α)
2ν and λp0+ν = E

(α)
2ν+1,

respectively.
Since, after these observations, it is straightforward to transpose the results of section 3

to the one-dimensional case, we are not going to detail them here. We would only like to
mention that the action of the deformed su(1,1) generators on the wavefunctions reads

K
(α)
0 ψ(α)

n (x) = 1

4λ
E(α)

n ψ(α)
n (x) = α

4λ

(
n2 + (2n + 1)

λ

α

)
ψ(α)

n (x),

K(α)
+ ψ(α)

n (x) = α

4λ

[
(n + 1)(n + 2)

(
n + 2

λ

α

) (
n + 2

λ

α
+ 1

)]1/2

ψ
(α)
n+2(x),

K
(α)
− ψ(α)

n (x) = α

4λ

[
n(n − 1)

(
n + 2

λ

α
− 2

) (
n + 2

λ

α
− 1

)]1/2

ψ
(α)
n−2(x),

leading to the standard su(1,1) results K0ψn(x) = 1
2

(
n + 1

2

)
ψn(x),K±ψn(x) = 1

2 [(n±1)(n+
1 ± 1)]1/2ψn±2(x) in the α → 0 limit.

5. Conclusion

In this paper, we have highlighted the interest of quadratic algebras for PDM Schrödinger
equations by constructing spectrum generating algebras for a class of d-dimensional radial
harmonic oscillators with d � 2 and a specific PDM choice, depending on some positive
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parameter α. We have also shown how minor changes enable the one-dimensional oscillator
on the line with the same type of mass to be included in such a class.

For these quadratic algebras, we have considered three different sets of generators. The
first one

(
K̃

(α)
1 , K̃

(α)
2 , K̃

(α)
3

)
has allowed us to prove the existence of a single unitary irreducible

representation belonging to the positive-discrete series type for d � 2 and of two of them for
d = 1, as well as to obtain the bound-state quadratic energy spectrum.

The second set
(
K̄

(α)
1 , K̄

(α)
2 , K̄

(α)
3

)
has provided us with an explicit demonstration that the

quadratic algebra considered here gives rise to the well-known su(1,1) Lie algebra generating
the oscillator spectrum in the constant-mass limit, i.e., for α → 0.

This correspondence has been studied further by constructing a third set of operators(
K

(α)
0 ,K

(α)
+ ,K

(α)
−

)
, which go over to the standard su(1,1) generators (K0,K+,K−) for

α → 0 and may therefore be termed the deformed su(1,1) generators. All the bound-state
wavefunctions have finally been built by using the lowering and raising generators, K

(α)
− and

K
(α)
+ , respectively.

Some interesting open problems for future work are the extensions of the present study
to other exactly solvable PDM Schrödinger equations either with the same potential but a
different mass or with both different potential and mass.

Appendix

The purpose of this appendix is to prove equations (2.5)–(2.8) by using the deformed su(1,1)
algebra introduced in section 3.3.

Let us start with ψ
(α)
0,L(r), which, according to the second relation in (3.17), is annihilated

by K
(α)
− or, equivalently, by A

(α)
− . Equations (3.14) and (3.15), together with (3.1), yield the

first-order differential equation

r
d

dr
ψ

(α)
0,L(r) =

[
−1

2

(
λ

α
+ 1

)
(1 + t) +

1

2
(L + 1)(1 − t)

]
ψ

(α)
0,L(r)

whose solution can be written in the form (2.5).
The excited-state wavefunctions ψ

(α)
n,L(r), n = 1, 2, . . . , can now be determined

recursively from ψ
(α)
0,L(r) by employing the first relation in (3.17). When combined with

definition (3.16), the latter yields

ψ
(α)
n+1,L(r) = 1

16α

(
2n +

λ

α
+ L + 2

) (
2n +

λ

α
+ L + 3

)1/2

×
[
(n + 1)

(
n + L +

3

2

) (
n +

λ

α
+ L + 1

) (
n +

λ

α
+

1

2

)]−1/2

×
(

2n +
λ

α
+ L + 1

)−1/2

A(α)
+ ψ

(α)
n,L(r). (A.1)

Let us now make the ansatz

ψ
(α)
n,L(r) = N (α)

n,L

N (α)
0,L

ψ
(α)
0,L(r)Pn(t), (A.2)

where Pn(t) is some nth-degree polynomial in t, such that P0(t) = 1. On inserting (A.2) in
A

(α)
+ ψ

(α)
n,L(r) and using equations (3.1) and (3.14), we get
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A(α)
+ ψ

(α)
n,L(r) = −8α

N (α)
n,L

N (α)
0,L

ψ
(α)
0,L(r)

2n + λ
α

+ L + 2

{(
2n +

λ

α
+ L + 2

)
(1 − t2)

d

dt

−
(

n +
λ

α
+ L + 1

) [
λ

α
− L − 1 +

(
2n +

λ

α
+ L + 2

)
t

]}
Pn(t)

which, according to (A.1) and (A.2), should be proportional to ψ
(α)
0,L(r)Pn+1(t). This clearly

identifies Pn(t) as the Jacobi polynomial P
(β,γ )
n (t) with β = λ

α
− 1

2 , γ = L + 1
2 , because the

latter satisfies the relation{
(2n + β + γ + 2)(1 − t2)

d

dt
− (n + β + γ + 1)[β − γ + (2n + β + γ + 2)t]

}
×P (β,γ )

n (t) = −2(n + 1)(n + β + γ + 1)P
(β,γ )

n+1 (t) (A.3)

obtained by eliminating P
(β,γ )

n−1 (t) between the Jacobi recursion and differential relations (see
equations (22.7.1) and (22.8.1) of [60]). Hence equation (2.6) is proved.

Finally, on combining equations (A.1)–(A.3), we arrive at a recursion relation for the
normalization coefficient

N (α)
n+1,L

N (α)
n,L

=
(

(n + 1)
(
n + λ

α
+ L + 1

) (
2n + λ

α
+ L + 3

)
(
n + L + 3

2

) (
n + λ

α
+ 1

2

) (
2n + λ

α
+ L + 1

)
)1/2

whose solution is given by (2.8). This completes the determination of the wavefunctions
ψ

(α)
n,L(r).
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